If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4.5x-3.5=0
a = 1; b = 4.5; c = -3.5;
Δ = b2-4ac
Δ = 4.52-4·1·(-3.5)
Δ = 34.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4.5)-\sqrt{34.25}}{2*1}=\frac{-4.5-\sqrt{34.25}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4.5)+\sqrt{34.25}}{2*1}=\frac{-4.5+\sqrt{34.25}}{2} $
| 8(6+k)=80 | | -2.4+.3r=9 | | 7x-2(3x-1)=4 | | X=2,8x^2 | | 6(x-10)=x+18 | | 42=42+14x | | 6t-3=2t-10 | | 6.1x-5.2=19.2 | | 15x-3=9x-21 | | 13=5-6x | | -x+11=10 | | 19/x=23/100 | | 3(x+7)-1=3x+20 | | 8/p=28.95 | | 10y-5y-5=53.30 | | 5-(-7)=2x+5 | | 19=(-7t)+75 | | 4x=7-5 | | 6x2−10x+8=3x+6 | | 8p-2p=15 | | a÷3+6=12 | | g/4+14=10 | | s/4+13=12 | | 14-2d=10 | | 2p−1=1 | | -80+20d=180 | | -4=-1-3(2p+3)=-1 | | 9^7n+2=3 | | 2.3^x-3^x=81 | | 10•14^6x-2-10=90 | | 10x14^6x-2-10=90 | | 6x-2+132-x=180 |